Welcome to Global Physical Environments.
The Earth is the place where we live, the water that we drink, the air that we breathe, and the home to all known life in the universe. The earth is a system, composed of many interacting subsystems: the atmosphere, hydrosphere, biosphere, geosphere, and anthrosphere. The earth is dynamic. We live in a swiftly changing world, characterized by rapidly changing climates, shifting landscapes, and growing human populations. Now, more than ever, it’s essential to understand how the Earth system works, how it affects our livelihoods, and how we are altering the physical environment of our planet.

Geography/IES 120 provides a critical foundation for students by introducing them to how the Earth system works and what makes Earth livable. Through this course you will gain a deeper appreciation for the diverse processes that shape our local, regional and global landscapes. Many students take this course to fulfill their physical science requirement. Others use it as a gateway to majors and careers in Geography, Environmental Studies, and Environmental Science.

INSTRUCTORS
Professor Jack Williams, 208 Science Hall (1st half of the semester), jww@geography.wisc.edu
Office Hours: Tuesdays, 4-5pm and Wednesdays 4-5pm
Professor Erika Marin-Spiotta, 223 Science Hall (2nd half of the semester)
marinspiotta@geography.wisc.edu Office Hours: TBA

TEACHING ASSISTANTS: Yue Wang (head TA), Chase Kasmerchak, Niwaeli Kimambo, and Ben Watson. See the Discussion Syllabus for their office hours and contact information.

FORMAT: Lecture 2 hours per week and discussion section 1 hour per week. Discussion sections elaborate the principal points of class lectures and provide opportunities to discuss topics of student interest related to lecture material.

LECTURES: Lecture Section 11-11:50am, Humanities Building, Room 3650
We are using lecture capture technology this semester and plan to record all lectures. We plan to post recorded lectures via LearnUW, but caution that this technology is not 100% reliable and should be considered a backup, not a primary means of getting the lecture material.

CREDITS: 3 credits in physical science.

EXAMINATIONS: Four 50-minute in-class examinations will be given at roughly 4-week intervals. The last exam will be on the last day of instruction. Each exam will stress the material covered since the previous exam. There is no final comprehensive exam during the end-of-semester examination week.

GRADING: The final grade will be determined from a curve of cumulative points achieved on the class examinations and the discussion section. Each class exam will be worth approximately 30 points and the discussion section grade will count for 50 points. Discussion section points will be
earned from worksheets and activities described on the syllabus provided by the TAs at the first section meeting. The potential total number of points for the course is 170.

DISCUSSION: Discussion section points are based on attendance (which is mandatory), in-class exercises and discussion participation. The schedule of discussion activities will be handed out in section.

PREREQUISITES: There are no prerequisite courses for this class, but students are expected to be geographically literate. You should know the location of the world’s continents and oceans, the location of the 50 states and be able to read latitude and longitude on a map. Much of this information is included in the first two chapters of your textbook or in any student atlas.

HONORS: If you are registered for honors, please contact a TA early in the semester to discuss the project. **Note for Fall2014** -- Due to an error with the Registrar, the Honors Option was not listed for Geog/NIES120 for the Fall. **We are still offering the Honors option!** If you would like to add the Honors option for this course, please contact your TA as soon as possible so that we can enable it for you.

EXTRA CREDIT: Extra credit is not offered.

ATTENDANCE: Attendance at class lectures is your responsibility; however, success in this course usually requires regular attendance and good note-taking. Attendance allows you to ask questions, and hear other students’ questions answered. We welcome questions and discussion during or after lecture.

ACADEMIC MISCONDUCT: Instances of plagiarism, cheating, and other forms of academic misconduct have serious consequences for the students involved. To avoid any possibility of misunderstanding, you are strongly encouraged to consult the campus academic integrity web page: students.wisc.edu/doso/acadintegrity.html. The documents referenced by this page contain explanations of what constitutes misconduct and related policies and procedures.

ONLINE RESOURCES:

learnuw.wisc.edu/ Password-protected course materials, including 1) News, used by the instructors for class announcements, 2) Content, where the instructors post materials for download, 3) Discussion, containing bulletin boards for student questions and feedback, and 4) Grades.

Please Note: Discussion sections will not meet until the week of September 8, the first full week of instruction.
LECTURE SCHEDULE FALL 2014:

Week 1 W Sep 03 1) Introduction to Geography and Earth System Science, Units 1-3

Week 2 M 08 2) EMR, Earth-Sun Fundamentals, Unit 4
 W 10 3) Atmosphere Fundamentals, Composition and Structure, Unit 6

Week 3 M 15 4) Earth’s Energy Cycle, Unit 5
 W 17 5) Earth’s Energy Cycle and Temperature, Units 5, 7

Week 4 M 22 6) Atmospheric Pressure and Motion, Unit 8
 W 24 7) Atmospheric Moisture and Stability, Unit 11

Week 5 M 29 8) *** FIRST EXAM ***
 W Oct 01 9) Atmospheric Circulation, Unit 9

Week 6 M 06 10) Weather, Fronts, and Mid-latitude Cyclones, Units 12, 13
 W 08 11) Ocean Structure and Circulation, Unit 10

Week 7 M 13 12) Water Cycle and Water Resources, Units 11, 38
 W 15 13) Global Climates and Biomes, Units 14-17

Week 8 M 20 14) Global Climate Change, Units 18,19
 W 22 15) *** SECOND EXAM ***

Week 9 M 27 16) Human Effects on Global Biogeochemical Cycles, Unit 20 and
 W 29 Focus on the Science Box p. 292
 17) Soil Systems & Soil Forming Environments, Units 21-23

Week 10 M Nov 03 18) Characteristics of Earth’s Surface and Interior, Units 27-29
 W 05 19) Characteristics of Earth’s Surface and Interior, Units 27-29

Week 11 M Nov 10 20) Earth’s Tectonic Systems, Units 30-31
 W 12 21) Volcanic and Earthquake Hazards, Units 32-34

Week 12 M 17 22) *** THIRD EXAM ***
 W 19 23) Weathering Processes, Units 35, 36, 42

Week 13 M 24 24) Mass-Movement Processes and Hazards, Units 36, 37
 W 26 25) Fluvial Erosion and River Processes, Units 38-41

Week 14 M Dec 01 26) Arid and Aeolian Systems, Units 47,
 W 03 27) Glacier Landforms and Sediments, Units 43-45

Week 15 M 08 28) Responses of Glacier Systems to Climate Change, Units 46, 18, 19
 W 10 29) *** FOURTH EXAM ***

¹Unit 1 will be covered in lecture – you are expected to read Units 2-3 on your own and be responsible for this material.